337 research outputs found

    Design and update of a classification system: The UCSD map of science

    Get PDF
    Global maps of science can be used as a reference system to chart career trajectories, the location of emerging research frontiers, or the expertise profiles of institutes or nations. This paper details data preparation, analysis, and layout performed when designing and subsequently updating the UCSD map of science and classification system. The original classification and map use 7.2 million papers and their references from Elsevier's Scopus (about 15,000 source titles, 2001-2005) and Thomson Reuters' Web of Science (WoS) Science, Social Science, Arts & Humanities Citation Indexes (about 9,000 source titles, 2001-2004)-about 16,000 unique source titles. The updated map and classification adds six years (2005-2010) of WoS data and three years (2006-2008) from Scopus to the existing category structure-increasing the number of source titles to about 25,000. To our knowledge, this is the first time that a widely used map of science was updated. A comparison of the original 5-year and the new 10-year maps and classification system show (i) an increase in the total number of journals that can be mapped by 9,409 journals (social sciences had a 80% increase, humanities a 119% increase, medical (32%) and natural science (74%)), (ii) a simplification of the map by assigning all but five highly interdisciplinary journals to exactly one discipline, (iii) a more even distribution of journals over the 554 subdisciplines and 13 disciplines when calculating the coefficient of variation, and (iv) a better reflection of journal clusters when compared with paper-level citation data. When evaluating the map with a listing of desirable features for maps of science, the updated map is shown to have higher mapping accuracy, easier understandability as fewer journals are multiply classified, and higher usability for the generation of data overlays, among others

    The assessment of science: the relative merits of post- publication review, the impact factor, and the number of citations

    Get PDF
    The assessment of scientific publications is an integral part of the scientific process. Here we investigate three methods of assessing the merit of a scientific paper: subjective post-publication peer review, the number of citations gained by a paper, and the impact factor of the journal in which the article was published. We investigate these methods using two datasets in which subjective post-publication assessments of scientific publications have been made by experts. We find that there are moderate, but statistically significant, correlations between assessor scores, when two assessors have rated the same paper, and between assessor score and the number of citations a paper accrues. However, we show that assessor score depends strongly on the journal in which the paper is published, and that assessors tend to over-rate papers published in journals with high impact factors. If we control for this bias, we find that the correlation between assessor scores and between assessor score and the number of citations is weak, suggesting that scientists have little ability to judge either the intrinsic merit of a paper or its likely impact. We also show that the number of citations a paper receives is an extremely error-prone measure of scientific merit. Finally, we argue that the impact factor is likely to be a poor measure of merit, since it depends on subjective assessment. We conclude that the three measures of scientific merit considered here are poor; in particular subjective assessments are an error-prone, biased, and expensive method by which to assess merit. We argue that the impact factor may be the most satisfactory of the methods we have considered, since it is a form of pre-publication review. However, we emphasise that it is likely to be a very error-prone measure of merit that is qualitative, not quantitative

    Models of parenting and its effect on academic productivity:Preliminary results from an international survey

    Get PDF
    This preliminary paper investigates the cost of parenting engagement on academic productivity and impact. Instead of investigating the relationship between gender and academia, this study focuses on time invested in parenting as the lead factor underpinning productivity differences for both men and women. Survey responses from 17,519 first and last authors publishing between 2007 and 2017 yielded four distinct parenting types: Lead parents; Satellite parents; Sole parents; and Dual parents. In addition a free text box in the survey allowed for the analysis of 5976 qualitative responses about participant’s experiences balancing parenting with their partners, and academic careers. Results show a significant difference across all types of parenting relative to gender for the number of papers produced, as well as for the proportion of papers published in top journals. In addition, for men and women who take on dual parenting roles (a hypothetical 50/50 split), the productivity cost is higher for women. Conversely, there is a significant cost for men and women who take on the role of Lead parent. Further qualitative investigation highlights the incidence of an ‘invisible burden’in self-identified dual parenting families, wherein there is a significant amount of unacknowledged labor that is undertaken by females. This invisible labor may contribute to the difference in productivity between men and women in dual-parenting relationships. © 2019 17th International Conference on Scientometrics and Informetrics, ISSI 2019 - Proceedings. All rights reserved

    Molecular basis for effects of carcinogenic heavy metals on inducible gene expression.

    Get PDF
    Certain forms of the heavy metals arsenic and chromium are considered human carcinogens, although they are believed to act through very different mechanisms. Chromium(VI) is believed to act as a classic and mutagenic agent, and DNA/chromatin appears to be the principal target for its effects. In contrast, arsenic(III) is considered nongenotoxic, but is able to target specific cellular proteins, principally through sulfhydryl interactions. We had previously shown that various genotoxic chemical carcinogens, including chromium (VI), preferentially altered expression of several inducible genes but had little or no effect on constitutive gene expression. We were therefore interested in whether these carcinogenic heavy metals might target specific but distinct sites within cells, leading to alterations in gene expression that might contribute to the carcinogenic process. Arsenic(III) and chromium(VI) each significantly altered both basal and hormone-inducible expression of a model inducible gene, phosphoenolpyruvate carboxykinase (PEPCK), at nonovertly toxic doses in the chick embryo in vivo and rat hepatoma H411E cells in culture. We have recently developed two parallel cell culture approaches for examining the molecular basis for these effects. First, we are examining the effects of heavy metals on expression and activation of specific transcription factors known to be involved in regulation of susceptible inducible genes, and have recently observed significant but different effects of arsenic(III) and chromium(VI) on nuclear transcription factor binding. Second, we have developed cell lines with stably integrated PEPCK promoter-luciferase reporter gene constructs to examine effects of heavy metals on promoter function, and have also recently seen profound effects induced by both chromium(VI) and arsenic(III) in this system. These model systems should enable us to be able to identify the critical cis (DNA) and trans (protein) cellular targets of heavy metal exposure leading to alterations in expression of specific susceptible genes. It is anticipated that such information will provide valuable insight into the mechanistic basis for these effects as well as provide sensitive molecular biomarkers for evaluating human exposure

    Growth factor release from a chemically modified elastomeric poly(1,8‐octanediol‐co‐citrate) thin film promotes angiogenesis in vivo

    Full text link
    The ultimate success of in vivo organ formation utilizing ex vivo expanded “starter” tissues relies heavily upon the level of vascularization provided by either endogenous or artificial induction of angiogenic or vasculogenic events. To facilitate proangiogenic outcomes and promote tissue growth, an elastomeric scaffold previously shown to be instrumental in the urinary bladder regenerative process was modified to release proangiogenic growth factors. Carboxylic acid groups on poly(1,8‐octanediol‐co‐citrate) films (POCfs) were modified with heparan sulfate creating a heparan binding POCf (HBPOCf). Release of proangiogenic growth factors vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), and insulin‐like growth factor 1 (IGF‐1) from HBPOCfs demonstrated an approximate threefold increase over controls during a 30‐day time course in vitro . Atomic force microscopy demonstrated significant topological differences between films. Subcutaneous implantation of POCf alone, HBPOCf, POCf‐VEGF, and HBPOCf‐VEGF within the dorsa of nude rats yielded increased vascular growth in HBPOCf‐VEGF constructs. Vessel quantification studies revealed that POCfs alone contained 41.1 ± 4.1 vessels/mm 2 , while HBPOCf, POCf‐VEGF, and HBPOCF‐VEGF contained 41.7 ± 2.6, 76.3 ± 9.4, and 167.72 ± 15.3 vessels/mm 2 , respectively. Presence of increased vessel growth was demonstrated by CD31 and vWF immunostaining in HBPOCf‐VEGF implanted areas. Data demonstrate that elastomeric POCfs can be chemically modified and possess the ability to promote angiogenesis in vivo . © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90248/1/33306_ftp.pd

    ALG: Automated Genotype Calling of Luminex Assays

    Get PDF
    Single nucleotide polymorphisms (SNPs) are the most commonly used polymorphic markers in genetics studies. Among the different platforms for SNP genotyping, Luminex is one of the less exploited mainly due to the lack of a robust (semi-automated and replicable) freely available genotype calling software. Here we describe a clustering algorithm that provides automated SNP calls for Luminex genotyping assays. We genotyped 3 SNPs in a cohort of 330 childhood leukemia patients, 200 parents of patient and 325 healthy individuals and used the Automated Luminex Genotyping (ALG) algorithm for SNP calling. ALG genotypes were called twice to test for reproducibility and were compared to sequencing data to test for accuracy. Globally, this analysis demonstrates the accuracy (99.6%) of the method, its reproducibility (99.8%) and the low level of no genotyping calls (3.4%). The high efficiency of the method proves that ALG is a suitable alternative to the current commercial software. ALG is semi-automated, and provides numerical measures of confidence for each SNP called, as well as an effective graphical plot. Moreover ALG can be used either through a graphical user interface, requiring no specific informatics knowledge, or through command line with access to the open source code. The ALG software has been implemented in R and is freely available for non-commercial use either at http://alg.sourceforge.net or by request to [email protected]

    Fifty-Year Fate and Impact of General Medical Journals

    Get PDF
    Background: Influential medical journals shape medical science and practice and their prestige is usually appraised by citation impact metrics, such as the journal impact factor. However, how permanent are medical journals and how stable is their impact over time? Methods and Results: We evaluated what happened to general medical journals that were publishing papers half a century ago, in 1959. Data were retrieved from ISI Web of Science for citations and PubMed (Journals function) for journal history. Of 27 eligible journals publishing in 1959, 4 have stopped circulation (including two of the most prestigious journals in 1959) and another 7 changed name between 1959 and 2009. Only 6 of these 27 journals have been published continuously with their initial name since they started circulation. The citation impact of papers published in 1959 gives a very different picture from the current journal impact factor; the correlation between the two is non-significant and very close to zero. Only 13 of the 5,223 papers published in 1959 received at least 5 citations in 2009. Conclusions: Journals are more permanent entities than single papers, but they are also subject to major change and their relative prominence can change markedly over time

    Bibliometric Evidence for a Hierarchy of the Sciences

    Get PDF
    The hypothesis of a Hierarchy of the Sciences, first formulated in the 19(th) century, predicts that, moving from simple and general phenomena (e.g. particle dynamics) to complex and particular (e.g. human behaviour), researchers lose ability to reach theoretical and methodological consensus. This hypothesis places each field of research along a continuum of complexity and "softness", with profound implications for our understanding of scientific knowledge. Today, however, the idea is still unproven and philosophically overlooked, too often confused with simplistic dichotomies that contrast natural and social sciences, or science and the humanities. Empirical tests of the hypothesis have usually compared few fields and this, combined with other limitations, makes their results contradictory and inconclusive. We verified whether discipline characteristics reflect a hierarchy, a dichotomy or neither, by sampling nearly 29,000 papers published contemporaneously in 12 disciplines and measuring a set of parameters hypothesised to reflect theoretical and methodological consensus. The biological sciences had in most cases intermediate values between the physical and the social, with bio-molecular disciplines appearing harder than zoology, botany or ecology. In multivariable analyses, most of these parameters were independent predictors of the hierarchy, even when mathematics and the humanities were included. These results support a "gradualist" view of scientific knowledge, suggesting that the Hierarchy of the Sciences provides the best rational framework to understand disciplines' diversity. A deeper grasp of the relationship between subject matter's complexity and consensus could have profound implications for how we interpret, publish, popularize and administer scientific research

    South Green Galaxy: a suite of tools for plant genomics

    Get PDF
    Playwright: N/A Director: N/A Academic Year: 2000-2001https://scholarworks.sjsu.edu/production_images/2682/thumbnail.jp
    • 

    corecore